Войти
Задать вопрос
Алгебра
Галюся
7 января, 12:58
Доказать, что 3 в степени n не делится на 7
+3
Ответы (
1
)
Витя
7 января, 15:18
0
Доказательство "от обратного".
Предположим, что число 3ⁿ делится на число 7. Тогда, в разложении числа 3ⁿ на простые множители, хотя-бы один раз должен встретиться множитель равный 7.
3ⁿ=3*3*3 * ... * 3
Здесь простое число 3 повторено ровно n раз и ни разу не встречается множитель 7.
Следовательно, наше предположение неверно.
Значит, 3ⁿ не делится на 7.
Что и требовалось доказать.
Комментировать
Жалоба
Ссылка
Знаешь ответ?
Отправить
Не уверен в ответе?
Найди верный ответ на вопрос ✅
«Доказать, что 3 в степени n не делится на 7 ...»
по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Помоги с ответом
Какое наибольшее число плоскастей можно проаести через различные пары из четырех параллельных прямых
Нет ответа
Почему при упоминании о лимоне у человека выделяется слюна? случается ли такое у людей которые не ели лимоны?
Нет ответа
Найдите значение минус А если 1) a=3,8 2) a=-6,4
Нет ответа
Вычеслите массовую долю кальция, кремния, кислорода в веществе CaSiO3
Нет ответа
Решите уравнение 5 в степени x = 125
Нет ответа
Главная
»
Алгебра
» Доказать, что 3 в степени n не делится на 7
Войти
Регистрация
Забыл пароль