Войти
Задать вопрос
Алгебра
Эвелинка
13 октября, 07:00
log 0.5 (4x-1) - log0.5 (7x-3) = 1
+3
Ответы (
1
)
Лидуся
13 октября, 10:10
0
Log₀,₅ (4x-1) - log₀,₅ (7x-3) = 1.
ОДЗ:
4 х - 1 > 0; ⇒x > 1/4
7x - 3 > 0. ⇒x > 3/7
ОДЗ: х∈ (3/7; + ∞)
Разность логарифмов равна логарифму частного.
1=log ₀,₅0,5
log₀,₅ (4x-1) / (7x-3) = log ₀,₅0,5 ⇒
в силу монотонности логарифмическая функция каждое свое значение принимает только в одной точке.
(4 х-1) / (7 х-3) = 0,5 ⇒ 8 х-2=7 х-3; 8 х-7 х=2-3; х=-1
х=-1 не входит в ОДЗ.
Уравнение не имеет корней.
Комментировать
Жалоба
Ссылка
Знаешь ответ?
Отправить
Не уверен в ответе?
Найди верный ответ на вопрос ✅
«log 0.5 (4x-1) - log0.5 (7x-3) = 1 ...»
по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Помоги с ответом
Какое наибольшее число плоскастей можно проаести через различные пары из четырех параллельных прямых
Нет ответа
Почему при упоминании о лимоне у человека выделяется слюна? случается ли такое у людей которые не ели лимоны?
Нет ответа
Значения слов: 1. Дельта 2. пороги 3. ил 4. папирус 5. оазин 6. фараон
Нет ответа
Объясните как определить заряд иона образуемого кислотным остатком и соответствующий оксид ... на примере H3PO4
Нет ответа
Найдите значение минус А если 1) a=3,8 2) a=-6,4
Нет ответа
Главная
»
Алгебра
» log 0.5 (4x-1) - log0.5 (7x-3) = 1
Войти
Регистрация
Забыл пароль