Задать вопрос
6 августа, 16:43

Решите уравнение cos6x-cos3x=0. Укажите корни, принадлежащие отрезку [0; пи].

+1
Ответы (1)
  1. 6 августа, 19:55
    0
    Cos (6x) - cos (3x) = - 2*sin (9x/2) * sin (3x/2) = 0

    sin (9x/2) = 0, 9x/2=πk, x=2πk/9

    sin (3x/2) = 0, 3x/2=πk, x=2πk/3

    Найдем, при каких к корни будут принадлежать указанному промежутку:

    0≤2πk/9≤π, 0≤k≤4.5 - т. е. k=0, 1, 2, 3, 4

    0≤2πk/3≤π, 0≤k≤1.5 - т. е. k=0, 1

    x∈[0; π]

    k=0, x=0

    k=1, x=2π/9, x=2π/3

    k=2, x=4π/9, x=4π/3

    k=3, x=6π/9 = 2π/3, x=6π/3 = 2π

    k=4, x=8π/9

    Ответ: 0, 4π/9, 2π/3, 8π/9
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Решите уравнение cos6x-cos3x=0. Укажите корни, принадлежащие отрезку [0; пи]. ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы