Задать вопрос
6 января, 08:52

По кругу расставлены 12 чисел по следующему правилу: каждое число в точности равно модулю разности двух чисел, идущих за ним по часовой стрелке. Оказалось, что сумма всех чисел равна 1. Найдите наибольшее число, которое могло оказаться среди расставленных.

+1
Ответы (1)
  1. 6 января, 10:31
    0
    Ясно, что в любом кругу чисел можно отыскать наибольшее число. Положим что оно равно x. А наибольшее из 2 предшествующих его соседних чисел чисел равно y. Понятно что все числа положительны, тк все равны модулю разности двух предшествующих. Но тогда поскольку модуль разности двух положительных чисел не может превосходить наибольшее из этих чисел (надеюсь понятно), то у>=x, тк x - самое большое, то x>=y. Откуда из этих двух условий: x=y. Пусть меньшее число в этой разности равно z, тогда x=y-z; x=x-z, откуда z=0. Теперь по условию легко восстановить все 12 чисел: 0, x, x, 0, x, x, 0, x, x, 0, x, x и так далее по кругу. Откуда 1=8x x=1/8. Ответ: x=1/8
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «По кругу расставлены 12 чисел по следующему правилу: каждое число в точности равно модулю разности двух чисел, идущих за ним по часовой ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы