Войти
Задать вопрос
Алгебра
Натуня
24 июня, 04:46
Cos 20°*cos40°*cos8° хелп
+5
Ответы (
1
)
Геля
24 июня, 06:38
0
Решение
Пользуемся формулой sin (2*x) = 2*sin (x) * cos (x)
Откуда cos (x) = sin (2*x) / (2*sin (x));
Подставляем в формулу: cos (20) * cos (40) * cos (80) = sin (40) * cos (40) * cos (80) / (2*sin (20));
Используем эту формулу, чтобы преобразовать sin (40) * cos (40) = sin (80) / 2
Опять же подставляем и получаем: sin (80) * cos (80) / (4*sin (20));
Подставляя еще раз получим sin (160) / (8*sin (20)), но sin (180-x) = sin (x), значит sin (180-20) = sin (20);
Получаем sin (20) / (8*sin (20)) = 1/8
Комментировать
Жалоба
Ссылка
Знаешь ответ?
Отправить
Не уверен в ответе?
Найди верный ответ на вопрос ✅
«Cos 20°*cos40°*cos8° хелп ...»
по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Помоги с ответом
Какое наибольшее число плоскастей можно проаести через различные пары из четырех параллельных прямых
Нет ответа
Почему при упоминании о лимоне у человека выделяется слюна? случается ли такое у людей которые не ели лимоны?
Нет ответа
Найдите значение минус А если 1) a=3,8 2) a=-6,4
Нет ответа
Найдите величину вписанного угла, если центральный угол, опирающийся на ту же дугу, что и вписанный, равен 78 градусов.
Нет ответа
Вычеслите массовую долю кальция, кремния, кислорода в веществе CaSiO3
Нет ответа
Главная
»
Алгебра
» Cos 20°*cos40°*cos8° хелп
Войти
Регистрация
Забыл пароль