Задать вопрос
29 октября, 19:17

Найти наименьшее число, которое при делении на 2 дает в остатка 1, на 3 - в остатка 2, на 4 - в остатка 3, на 5 - в остатка 4; на 6 - в остатка 5, на 7 - в остатка 6, на 8 - в остатка 7, на 9 - в остатка 8, на 10 - в остатка 9. Помогите, умоляю!

+2
Ответы (1)
  1. 29 октября, 22:32
    0
    Ответ: Легко видеть, что если к искомому числу прибавить единицу, то результат будет делиться без остатка на 2, 3, 4, 5 и 6. Наименьшее число с этим свойством есть 60 (наименьшее общее кратное) и все такие числа содержаться в ряду 60, 120, 180, ... Искомое число делится на 7, значит в указанном ряду нужно найти число, дающее при делении на 7 остаток 1. Этому условию отвечает число 120. Итак, число 119 - наименьшее, решающее задачу.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Найти наименьшее число, которое при делении на 2 дает в остатка 1, на 3 - в остатка 2, на 4 - в остатка 3, на 5 - в остатка 4; на 6 - в ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы