Задать вопрос
28 сентября, 05:53

Sin^42x+3cos4x-1=0 помогите решить

+1
Ответы (1)
  1. 28 сентября, 06:44
    0
    Cos (2*2x) = 1 - 2sin^2 (2x)

    (2sin^2 (2x)) ^2 + 3 - 6sin^2 (2x) - 1 = 0

    (2sin^2 (2x)) ^2 - 6sin^2 (2x) + 2 = 0

    2sin^4 (2x) - 3sin^2 (2x) + 1 = 0

    Замена: sin^2 (2x) = t, t = [0; 1]

    2t^2 - 3t + 1 = 0

    D = 9 - 8 = 1

    t1 = (3 - 1) / 4 = 2/4 = 1/2

    t2 = (3 + 1) / 4 = 4/4 = 1

    1) sin^2 (2x) = 1/2

    a) sin (2x) = + sqrt2/2

    b) sin (2x) = - sqrt2/2

    Объединяя решения а) и b), получаем: 2x = pi/4 + pi*k/2, x = pi/8 + pi*k/4

    2) sin^2 (2x) = 1

    c) sin (2x) = 1

    d) sin (2x) = - 1

    Объединяя решения с) и d), получаем: 2x = pi/2 + pi*k, x = pi/4 + pi*k/2
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Sin^42x+3cos4x-1=0 помогите решить ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы