Задать вопрос
31 января, 04:53

Артём написал на доске число 20162016. Из него он вычел сумму цифр числа 20162016. Полученной разностью Артём заменил число, записанное на доске. Описанные действия он продолжал до тех пор, пока на доске не осталась одна цифра. Какая цифра осталась на доске?

+2
Ответы (1)
  1. 31 января, 05:45
    0
    Заметим такой факт: число на доске изначатьно делится на 9. На очереднош шаге из числа вычитается сумма его цифр, но по свойству делимости на 9 эта сумма тоже делилась на девять, а разность двух делящихся на 9 чисел тоже делится на девять. Значит, наждый раз Артём записывает на доску число, делящееся на девять, а значит, на доске осталась цифра, делящаяся на девять - это 0 или 9. Но 0 не мог остаться, так как на предыдущем ходу из числа на доске вычли сумму его цифр, равную ему самому, значит этим числом была одна цифра, что невозможно. Значит, оставшееся число - это 9.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Артём написал на доске число 20162016. Из него он вычел сумму цифр числа 20162016. Полученной разностью Артём заменил число, записанное на ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы