Задать вопрос
9 октября, 20:31

в треугольники АВС проведены медианы АК и ВМ, перессекающиеся в точке О. Докажите, что площади треугольников МОК и АОВ относятся как 1:4

+2
Ответы (1)
  1. 9 октября, 21:38
    0
    Треугольники МОК и АОВ подобны по двум углам: МК - средняя линия тр-ка АВС, значит, МК параллельна АВ, тогда в тр-ках МОК и АОВ есть накрест лежащие углы. А их коэфициент подобия: к = МК/АВ = 1/2 (основание в 2 раза больше средней линии). Ну, и известно, что отношение площадей подобных треугольника равно к^2. Отсюда

    площадь тр-ка МОК / площадь тр-ка АОВ = 1/4
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «в треугольники АВС проведены медианы АК и ВМ, перессекающиеся в точке О. Докажите, что площади треугольников МОК и АОВ относятся как 1:4 ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы