Войти
Задать вопрос
Алгебра
Антонин
14 февраля, 07:55
Cos2x + 6sin x - 5 = 0 решите уравнение
+5
Ответы (
1
)
Дарья
14 февраля, 10:30
0
Разложим косинус двойного аргумента по формуле:
cos2x = cos²x - sin²x:
cos²x - sin²x + 6sinx - 5 = 0
Теперь прибавим и отнимем sin²x, чтобы использовать основное тригонометрическое тождество:
sin²x + cos²x - 2sin²x + 6sinx - 5 = 0
1 - 2sin²x + 6sinx - 5 = 0
-2sin²x + 6sinx - 4 = 0 (разделим на - 2):
sin²x - 3sinx + 2 = 0
Пусть t = sinx, t€[-1; 1].
t² - 3t + 2 = 0
t1 + t2 = 3
t1•t2 = 2
t1 = 2 - не входит в промежуток
t2 = 1.
Обратная замена:
sinx = 1
x = π/2 + 2πk, k€Z.
Ответ: х = π/2 + 2πk, k€Z.
Комментировать
Жалоба
Ссылка
Знаешь ответ?
Отправить
Не уверен в ответе?
Найди верный ответ на вопрос ✅
«Cos2x + 6sin x - 5 = 0 решите уравнение ...»
по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Помоги с ответом
Какое наибольшее число плоскастей можно проаести через различные пары из четырех параллельных прямых
Нет ответа
Почему при упоминании о лимоне у человека выделяется слюна? случается ли такое у людей которые не ели лимоны?
Нет ответа
Сколько будет 1000000 в 3 степени
Нет ответа
Значения слов: 1. Дельта 2. пороги 3. ил 4. папирус 5. оазин 6. фараон
Нет ответа
Объясните как определить заряд иона образуемого кислотным остатком и соответствующий оксид ... на примере H3PO4
Нет ответа
Главная
»
Алгебра
» Cos2x + 6sin x - 5 = 0 решите уравнение
Войти
Регистрация
Забыл пароль