Задать вопрос
23 июля, 03:18

Решить уравнение sin²4x-sin²2x=0

+3
Ответы (2)
  1. 23 июля, 05:38
    0
    Применяем формулу синуса двойного угла

    (2 sin2x cos2x) ²-sin²2x=0

    4 sin²2x cos²2x-sin²2x=0

    sin²2x (4cos²2x-1) = 0

    1) sin²2x=0

    sin2x=0

    2x=πn

    x=πn/2, n∈Z

    2) 4cos²2x-1=0

    cos²2x=1/4

    cos2x=1/2

    2x=⁺₋ arccos (0.5) + πk

    2x=⁺₋ π/3+πk

    x=⁺₋ π/6+πk/2, k∈Z

    Ответ: = πn/2; ⁺₋ π/6+πk/2; n, k∈Z
  2. 23 июля, 06:42
    0
    Распишем по формуле синуса двойного угла

    (2 * (2sinxcosx)) ^2 - (2sinxcosx) ^2=0

    Разделим на 2 * (2sinxcosx)

    2 * (2sinxcosx) - sinxcosx=0

    4sinxcosx-sinxcosx=0

    3sinxcosx=0

    Разделим на cosx

    3sinx=0

    sinx=0

    x=arcsin0+2 Пn

    x=2 Пn
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Решить уравнение sin²4x-sin²2x=0 ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы