Задать вопрос
11 июля, 04:54

Множество А содержит 101 элемент. Докажите, что количество его подмножеств, которые содержат парное количество элементов, равно количеству подмножеств, которые содержат непарное количество элементов.

+1
Ответы (1)
  1. 11 июля, 05:39
    0
    Сопоставим каждому подмножеству B, состоящему из четного числа элементов, подмножество C, полученное выкидыванием из A элементов, принадлежащих B. Поскольку в A нечетное число элементов, а в B четное число элементов, в С будет нечетное число элементов. В результате все подмножества разобьются на подобные пары подмножеств. Поэтому подмножеств, состоящих из четного числа элементов столько же, сколько подмножеств, состоящих из нечетного числа элементов.

    Для тех, кому мое рассуждение показалось сложным, рассмотрю пример с меньшим числом элементов. Пусть, скажем, в A 5 элементов: A={a, b, c, d, e}. Подмножеству {a, b} соответствует подмножество {c, d, e}, подмножеству {a, c} соответствует подмножество {b, d, e}, подмножеству {a, b, c, d} соответствует подмножество {e}, и так далее. Пустому подмножеству (в нем ноль элементов) соответствует само множество A.

    Разобьем все подмножества на пары (B, C), где B пробегает подмножества, состоящие из четного числа элементов, а C - - это подмножество, состоящее из тех элементов, которые не попали в B. Поскольку в A нечетное число элементов, в C будет нечетное число элементов.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Множество А содержит 101 элемент. Докажите, что количество его подмножеств, которые содержат парное количество элементов, равно количеству ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы