Войти
Задать вопрос
Алгебра
Петуня
31 мая, 01:15
найти f' (п/6), если f (x) = 0,5tg2x
+4
Ответы (
1
)
Всева
31 мая, 02:24
0
Находим сначала производную f (x).
f" (x) = 0,5*1/cos^2*2x=0,5/cos^2*2x.
Находим производную от п/6:
f' (п/6) = 0,5*1 / (cos^2*2*п/6) = 0,5/cos^2*п/3=0,5/1/4=1/2*4=2.
Ответ: f' (п/6) = 2.
Комментировать
Жалоба
Ссылка
Знаешь ответ?
Отправить
Не уверен в ответе?
Найди верный ответ на вопрос ✅
«найти f' (п/6), если f (x) = 0,5tg2x ...»
по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Помоги с ответом
Какое звено не входит в круговорот веществ в природе: 1. потребители. 2. разрушители. 3. паразиты. 4. оросительная система.
Нет ответа
Найдите - 10cos2a если cosa=0.6
Нет ответа
Решите неравенство: 2x^2 - 9x + 4 < = 0. В ответе укажите сумму целых решений неравенства
Нет ответа
Верны ли следующие суждения о рыночной экономики? А. Для рыночной экономики характерно централизованное планирование производства. Б.
Нет ответа
Найти синус числа а=-7 п
Нет ответа
Главная
»
Алгебра
» найти f' (п/6), если f (x) = 0,5tg2x
Войти
Регистрация
Забыл пароль