Задать вопрос
15 декабря, 16:53

Диаметр окружности, вписанной в равносторонний треугольник, равен 36 см. Найдите радиус окружности, описанной около данного треугольника.

+1
Ответы (2)
  1. 15 декабря, 17:43
    -2
    они равны.

    Дело в том, что в правильном треугольнике центры обеих окружностей совпадают между собой, - и с точкой пересечения медиан. То есть радиус вписанной окружности составляет 1/3 высоты (медианы, биссетрисы), - это расстояние от точки пересечения медиан до стороны ... А радиус описанной окружности - 2/3 высоты, это расстояние от вершины до центра.
  2. 15 декабря, 19:07
    -2
    В правильном треугольнике:

    R=2r

    R=18*2

    Ответ: 36
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Диаметр окружности, вписанной в равносторонний треугольник, равен 36 см. Найдите радиус окружности, описанной около данного треугольника. ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы