Задать вопрос
13 ноября, 08:25

Угол ACB вписан в окружность. Точка О - центр окружности. Хорда AB=m, угол ACB=x/2. Найти радиус окружности.

+1
Ответы (2)
  1. 13 ноября, 09:57
    0
    Соединим точку с т. А и В. Тогда угол АОВ и угол АСВ опираются на одну дугу. Поэтому угол АОВ=2 угла АСВ=α Теперь по теореме косинусов m^2=R^2+R^2-2RRcosα=2R^2 (1-cosα) R=m/√ (2 (1-cosα))
  2. 13 ноября, 11:44
    0
    Провести OA и OB. Треугольник AOB: угол AOB равен x/2 * 2 = x (угол AOB - центральный, опирается на ту же дугу, что и вписанный угол ACB. Центральный угол в два раза больше вписанного). В треугольнике AOB провести высоту OH. Треугольник OHA - прямоугольный. H - середина AB, следовательно, AH = m/2. Угол AOH = угол AOB / 2 = x/2. sin AOH = AH / OA. OA = r = m/2 : sin AOH = m / (2*sin x/2).
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Угол ACB вписан в окружность. Точка О - центр окружности. Хорда AB=m, угол ACB=x/2. Найти радиус окружности. ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы