Задать вопрос
2 марта, 15:30

Вершины треугольгика ABC

делят окружность, описанную около тругольника, в отношении 2:3:4. Найти углы этого треугольника

+4
Ответы (1)
  1. 2 марта, 16:32
    0
    Окружность делится вершинами треугольника на 2+3+4=9 равных частей.

    Каждая из них содержит дугу, равную

    360:9=40 градусов, умноженную на количество частей в ней.

    Углы треугольника АВС являются вписанными и равны половине центральных углов, на которые делят окружность вершины треугольника.

    1-я дуга равна 40*2=80 градусов.

    Угол, опирающийся на нее, равен 40 градусов.

    2-я дуга равна 40*3=120 градусов

    Угол, опирающийся на нее, равен 60 градусов

    3-я дуга равна 40*4=160 градусов.

    Угол, опирающийся на наее, равен 80 градусов.

    40+60+80=180 градусов сумма углов треугольника АВС
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Вершины треугольгика ABC делят окружность, описанную около тругольника, в отношении 2:3:4. Найти углы этого треугольника ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы