Задать вопрос
28 сентября, 14:10

Если две взаимно перпендикулярные грани треугольной пирамиды - равносторонние треугольники со стороной 4, то объем пирамиды равен ...

+3
Ответы (1)
  1. 28 сентября, 17:53
    0
    Объем пирамиды равен одной третьей произведения площади основания пирамиды на длину ее высоты.

    Площадь основания - это площадь правильного треугольника

    S=a²√3) : 4

    Высота пирамиды совпадает с апофемой грани - высотой правильного треугольника, т. к. высота пирамиды - перпеникулярна основанию. Здесь она содержится в грани, перпендикулярной основанию

    h=а √3) : 2

    Умножаем:

    V=1/3 (a²√3) : 4) * а √3) : 2=1/3 (3 а³) : 8) = а³ : 8
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Если две взаимно перпендикулярные грани треугольной пирамиды - равносторонние треугольники со стороной 4, то объем пирамиды равен ... ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы