Задать вопрос
1 июня, 00:44

В остроугольном треугольнике KLM точки N и O - середины сторон KL и KM соответственно, KH-высота треугольника. Докажите, что углы NHO и K равны.

+2
Ответы (1)
  1. 1 июня, 01:40
    0
    ОN - средняя линия треугольника KLM, значит она делит пополам в точке пересечения Р и высоту КН. Тогда треугольники КРN и НРN равны по двум катетам: КР=РН, а РN - общий. Значит равны и углы РКN и РНN. То же и с треугольниками РКО и НРО. Они равны, равны и углы РКО и РНО. Угол ОКN = равен сумме углов РКО и РКN, а угол NHO равен сумме РНN и РНО, то есть они равны суммам равных углов, значит и сами равны.

    Итак, угол NКО = углу NHO.

    Что и требовалось доказать.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «В остроугольном треугольнике KLM точки N и O - середины сторон KL и KM соответственно, KH-высота треугольника. Докажите, что углы NHO и K ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы