Задать вопрос
14 сентября, 06:55

Докажите, что площадь ромба равна половине произведения его диагоналей.

+4
Ответы (1)
  1. 14 сентября, 09:30
    0
    По сути, у ромба диагонали пересекаются под прямым углом, все стороны равны, тогда и треугольники (их 4), образованные диагоналями и сторонами тоже будут равны. рассмотрим один такой треугольник (назовём его АВО, где О - точка пересечения диагоналей, АВ - сторона ромба), он будет прямоугольным, т. к. (уже говорилось выше) диагонали пересекаются под прямым углом. этот угол в данном треугольнике - АОВ. площадь этого треугольника = 1/2 АО*ВО (это катеты). так и все остальные треугольники. площадь всего ромба = сумма площадей всех треугольников. тогда Sabcd = 4*1/2*АО*ВО = 2*АО*ВО. а т. к. АО=1/2 АС, а ВО=1/2 ВD, Sabcd = 2 * 1/2*АС * 1/2*ВD = 1/2 АС*ВD. что и требовалось доказать.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Докажите, что площадь ромба равна половине произведения его диагоналей. ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы