Задать вопрос
10 января, 02:17

Докажите, что если отрезки соединяющие середины противоположных сторон выпуклого четырехугольника, перпендикулярны, то диагонали данного четырехугольника равны.

+1
Ответы (1)
  1. 10 января, 05:22
    0
    Известно, что в выпуклом четырёхугольнике отрезки, соединяющие середины смежных сторон, образуют параллелограмм.

    В этом параллелограмме отрезки, соединяющие середины противоположных сторон, являются диагоналями параллелограмма.

    По условию эти отрезки (диагонали параллелограмма) перпендикулярны. Следовательно, этот параллелограмм является ромбом.

    У ромба все стороны равны. Значит, все отрезки, соединяющие середины смежных сторон, равны.

    Отрезок, соединяющий середины двух смежных сторон, параллелелен диагонали и является средней линией треугольника, образованного этими сторонами и диагональю.

    Поскольку средние линии всех треугольников равны, то и параллельные им диагонали равны, что и требовалось доказать.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Докажите, что если отрезки соединяющие середины противоположных сторон выпуклого четырехугольника, перпендикулярны, то диагонали данного ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы