Задать вопрос
3 октября, 23:20

1) На биссектрисе угла А взята точка В, а на сторонах угла - точки С и D, такие, что угол АВС равен углу АВD. Докажите, что АД=АС.

2) На основании АС равнобедренного треугольника АВС отложены равные отрезки АD и ЕС. Докажите, что треугольник BAD равен треугольнику ВСЕ.

+4
Ответы (1)
  1. 4 октября, 02:31
    0
    1) АВ - биссектриса. значит углы ВАС и ДАС равны. По условию углы АВС и АВД равны. Сторона АВ общая. Следовательно треугольники АВС и ДАС равны. Значит и стороны АД и АС равны.

    2) По условию, треугольник ABC равнобедренный, тогда AB=BC. Значит, треугольники BAD и BCE равны по двум сторонам и углу между ними (углы BAD и BCE равны, так как углы A и C треугольника ABC равны, AB=BC, AD=CE по условию).
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «1) На биссектрисе угла А взята точка В, а на сторонах угла - точки С и D, такие, что угол АВС равен углу АВD. Докажите, что АД=АС. 2) На ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы