Задать вопрос
1 февраля, 10:51

Боковая сторона равнобедренного треугольника равна 10, а основание 16. На какие отрезки делятся высота треугольника, опущенной из вершины, биссектрисой угла при основании?

+3
Ответы (1)
  1. 1 февраля, 11:39
    0
    Пусть дан треугольник АВС, у которого боковые стороны АВ и Вс, а основание АС, То высота проведенная из вершины В - ВК=sqrt (10^2-8^2) = sqrt36=6 см. Рассмотрим треугольник АВК, пусть в нем проведена биссектриса АD. Биссектриса треугольника делит противолежащую сторону на отрезки пропорциональные двум другим сторонам, то BD:DK=AB:AK. Пусть х - коэффициент пропорциональности, то BD=10x, DK=8x или что тоже самое BD=5x, DK=4x. Зная, что вся высота ВК=6 см, имеем уравнение 5 х+4 х=6

    9 х=6

    х=2/3

    Значит BD=10/3, DK=8/3
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Боковая сторона равнобедренного треугольника равна 10, а основание 16. На какие отрезки делятся высота треугольника, опущенной из вершины, ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы