Задать вопрос
27 мая, 16:36

площадь треугольника ABC на 5 кв. см больше площади треугольника MBN. найдите площадь треугольника MBN, если BM/BA=BN/BC=2/3.

+2
Ответы (1)
  1. 27 мая, 19:56
    +1
    Из условия BM/BA=BN/BC=2/3 следует, что треугольники ABC и MBN - подобные и 2/3-коэф. подобия, тогда площади подобных фигур относятся как S₁=k²S₂,

    где k - коэф. подобия.

    Пусть площадь треугольника MBN=х, тогда площадь треугольника АВС=х+5, тогда:

    х = (2/3) ² (х+5),

    9 х=4 (х+5);

    9 х=4 х+20;

    5 х=20;

    х=4.

    Площадь треугольника MBN=4 см², площадь треугольника АВС = 4+5=9 см²
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «площадь треугольника ABC на 5 кв. см больше площади треугольника MBN. найдите площадь треугольника MBN, если BM/BA=BN/BC=2/3. ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы