Задать вопрос
28 октября, 22:12

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

+1
Ответы (1)
  1. 29 октября, 00:32
    0
    Воспользуемся теоремой: отрезки касательных, проведённых из одной точки равны. Таким образом, у нас получается пара равных отрезков у вершины (5 и 5) и у 2 пары равных отрезков у основания (3 и 3). Получаем:

    10+2*6=22
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы