Задать вопрос
20 июля, 22:25

Вершины правильного треугольника АВС с периметром 18 см лежат на сфере. Найдите площадь сферы, если расстояние от ее центра до плоскости треугольника = 2

+5
Ответы (1)
  1. 20 июля, 23:34
    0
    Если хорошо посмотреть на правильный (равносторонний) Δ АВС и точку О (центр сферы. то увидишь правильную пирамиду, у которой боковое ребро - радиус сферы. Высота пирамиды = 2 и сторона основания = 6

    Надо найти боковое ребро (оно = R и S = 4πR^2)

    Смотрим только на пирамиду. Проведена высота ОК. Точка К - это точка пересечения медиан (высот, биссектрис). Медианы в равностороннем треугольнике делятся в отношении 1:2. Ищем медиану по т. Пифагора

    m^2 = 6^2 - 3^2 = 36 - 9 = 27

    m = 3√3

    Боковое ребро можно найти из Δ АО К. АО ищем, ОК = 2, АК = 2/3·3√3=2√3/3 = R сферы.

    Ищем площадь сферы.

    S = 4π R^2 = 4π (2√3/3) ^2=16π/3
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Вершины правильного треугольника АВС с периметром 18 см лежат на сфере. Найдите площадь сферы, если расстояние от ее центра до плоскости ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы