Задать вопрос
14 февраля, 07:31

В треугольнике АВС равны углы А и С. На стороне АС взяты точки Д и Е такие, что АД=СЕ. Докажите, что треугольник ДВЕ равнобедренный.

+2
Ответы (1)
  1. 14 февраля, 08:53
    0
    Т. к. углы A и С равны, то треугольник ABC равнобедренный. Проведем медиану BF к AC, которая в равнобедренном треугольнике является вершиной и высотой. Значит AF=FC. AF-DF=FC-FE, значит DF=FE. Значит DB соответсвенно равна BE и Dbe равнобедренный по двум сторонам.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «В треугольнике АВС равны углы А и С. На стороне АС взяты точки Д и Е такие, что АД=СЕ. Докажите, что треугольник ДВЕ равнобедренный. ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы