Задать вопрос
20 января, 15:38

Периметр прямоугольника равен 62, а диагональ равна 25. Найдите площадь этого прямоугольника

+5
Ответы (1)
  1. 20 января, 16:48
    -2
    Сумма двух соседних сторон треугольника равна половине периметра, то есть, 62/2=31. Обозначим соседние стороны треугольника за x и 31-x. Рассмотрим прямоугольный треугольник, состоящий из двух соседних сторон прямоугольника и его диагонали. По теореме Пифагора, x² + (31-x) ²=25², 2x²-62x+961=625, 2x²-62x+336=0, x²-31x+168=0. Решим это квадратное уравнение: D=31²-168*4=289, x1 = (31-17) / 2=7, x2 = (31+17) / 2=24. Значит, стороны прямоугольника равны 7 и 24 (во втором случае 24 и 7, что одно и то же). Площадь прямоугольника равна произведению сторон, то есть, 7*24=168.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Периметр прямоугольника равен 62, а диагональ равна 25. Найдите площадь этого прямоугольника ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы