Задать вопрос
16 января, 10:45

В треугольнике abc проведены медианы AK и BM пересекающиеся в точке О. Докажите, что площади треугольников MOK и AOB относятся как 1:4.

+2
Ответы (1)
  1. 16 января, 13:36
    0
    треугольники ABO и KMO подобны. Медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершины. OM:BO=1:2, OK:AO=1:2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия k=1/2. От сюда следует, что отношение площадей треугольников MOK и AOB равно 1/2 в квадрате. Или же 1:4. Ч. т. д.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «В треугольнике abc проведены медианы AK и BM пересекающиеся в точке О. Докажите, что площади треугольников MOK и AOB относятся как 1:4. ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы