Задать вопрос
6 августа, 09:09

Вероятность того что деталь нестандартная равна 0.1 найти вероятность того что среди 500 случайно отобранных деталей стандартными окажутся от 7 до10 деталей. P=0,9 q=1-p=0,1 n=500

+4
Ответы (1)
  1. 6 августа, 10:03
    0
    Решение ищем по формуле Муавра-Лапласа. Обозначим р=0,1 (вероятность успеха), n=500 (количество испытаний). Матожидание числа опытов М=n*p=500*0,1=50, дисперсия D=n*p * (1-p) = 50*0,9=45. (50-10) / (45^0.5) >P> (50-7) / (45^0.5), то есть 6,41>P>5,963.

    Р=1 / (6,28^0,5) интеграл в пределах от 5,963 до 6,41 exp (-x^2/2) = 1,166*10^-9. Интеграл табличный, решается через табулированную функцию. Требуемые значения случайной величины выходят за границу 4 * ско (ско - среднеквадратическое отклонение, равно корню квадратному из дисперсии), поэтому значение вероятности и такое маленькое.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Вероятность того что деталь нестандартная равна 0.1 найти вероятность того что среди 500 случайно отобранных деталей стандартными окажутся ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы