Задать вопрос
25 ноября, 20:15

Площадь сечения поверхности x^2+y^2+z^2=16 плоскостью y=3 равна ... (без Пи)

+2
Ответы (1)
  1. 25 ноября, 23:22
    -1
    Подставляя в уравнение плоскости y=3, получаем уравнение границы сечения: x²+9+z²=16, или x²+z²=7. А это есть уравнение окружности с центром в точке (0; 3; 0) и радиусом R=√7. Само же сечение представляет собой круг, который задаётся неравенством x²+z²≤7 и площадь которого S=π*R²=7*π≈22. Ответ: S≈22.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Площадь сечения поверхности x^2+y^2+z^2=16 плоскостью y=3 равна ... (без Пи) ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы