Задать вопрос
9 июля, 04:27

Помогите решить!

1. Вычислить площадь фигуры, ограниченной линиями

y=2-x^2 и y=x+2

2. Для функции F (x) найти первообразную, график которой проходит через т. М

f (x) = - 1/2x^2 - 3, M (-3; 1/2)

+1
Ответы (1)
  1. 9 июля, 04:44
    0
    1) Ищем пределы интегрирования, для чего решаем систему уравнений:

    у = 2 - х²

    у = х + 2, ⇒ 2 - х² = х + 2, ⇒ х² + х = 0, корни 0 и - 1

    Sфиг. = - (₋₁∫⁰ (2 - х²) dx - 1/2 * 1 * 2) = - ((2 х - х³/3) | в пределах от - 1 до 0 - 1) =

    = - ((-2 + 1/3) - 1) = 2 2/3 = 8/3

    2) f (x) = - 1/2x^2 - 3 = - х ⁻² - 3, M (-3; 1/2)

    F (x) = - x ⁻¹/-1 - 3x + C = 1/x - 3x + C

    1/2 = 1 / (-3) - 3 * (-3) + C

    1/2 = - 1/3 + 9 + С

    С = - 8 1/6

    Ответ: F (x) = - x⁻¹/-1 - 3x - 8 1/6 = 1/x - 3x - 8 1/6
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Помогите решить! 1. Вычислить площадь фигуры, ограниченной линиями y=2-x^2 и y=x+2 2. Для функции F (x) найти первообразную, график которой ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы