Задать вопрос
27 марта, 01:35

Докажите, что если граф связен и не содержит циклов, то в нем n-1 ребро (n - кол-во вершин)

+2
Ответы (1)
  1. 27 марта, 06:03
    0
    Возьмем какую-либо вершину. Просто выбрали любую. Теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. Поскольку циклов нет, рано или поздно мы "упремся" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. Заметим, что тогда ее степень равна 1. Возьмем и выкинем эту вершину и ее единственное ребро из графа. Теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). При этом связности мы не испортили, т. к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!

    Проделаем ту же операцию. Таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. Рассмотрим граф, в котором осталось 2 вершины. Одна из этих вершин имеет степень 1. Значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). Уберем последнюю "единичную" вершину. У нас осталась одна вершина и ни одного ребра. А значит вершин изначально было на 1 больше, чем ребер. Доказано.

    P. S.: Где задачи достал (а) ? Какой город?)
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Докажите, что если граф связен и не содержит циклов, то в нем n-1 ребро (n - кол-во вершин) ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы