Задать вопрос
9 октября, 17:51

Пусть a, b и c - различные чётные числа из промежутка [5, 47][5,47]. Какое наименьшее значение может принимать сумма двух различных корней уравнения (x-a) (x-b) + (x-b) (x-c) = 0 (x-a) (x-b) + (x-b) (x-c) = 0?

+5
Ответы (1)
  1. 9 октября, 18:49
    0
    Найдем корни уравнения:

    (x-a) (x-b) + (x-b) (x-c) = 0

    (x-b) (x-a+x-c) = 0

    (x-b) (2x - (a+c)) = 0

    (x-b) (x - (a+c) / 2) = 0

    x-b=0

    x ₁=b

    x - (a+c) / 2=0

    x ₂ = (a+c) / 2

    Значит сумма двух различных корней уравнения будет:

    х ₁+х₂=b + (a+c) / 2

    Если рассматривать различные четные числа из промежутка [5; 47], то это могут быть наименьшие последовательные числа - 6, 8, 10

    Теперь найдем наименьшее значение суммы корней:

    b=6

    a=10

    c=8

    х₁+х₂=b + (a+c) / 2=6 + (10+8) / 2=15

    b=8

    a=10

    c=6

    х₁+х₂=b + (a+c) / 2=8 + (10+6) / 2=16

    b=10

    a=6

    c=8

    х₁+х₂=b + (a+c) / 2=10 + (6+8) / 2=17

    -

    Очевидно, что наименьшее значение сумма корней уравнения будет равным 15

    Ответ 15
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Пусть a, b и c - различные чётные числа из промежутка [5, 47][5,47]. Какое наименьшее значение может принимать сумма двух различных корней ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы