Задать вопрос
23 октября, 23:46

записаны натуральные числа от 1 до 1001. Стерли все числа, делящиеся на 6. Сколько чисел осталось на доске?

+1
Ответы (2)
  1. 23 октября, 23:54
    0
    Найдем количество всех натуральных чисел, которые делятся на 6 из множества от 1 до 1001.

    n - натуральное.

    1≤n≤1001, домножим последнее неравенство на (1/6).

    (1/6) ≤ n/6 ≤ 1001/6;

    n/6 = k - натуральное,

    1/6≤k≤1001/6 = 166 + (5/6),

    т. к. k - натуральное, то последнее неравенство равносильно

    1≤k≤166;

    Таким образом среди натуральных чисел от 1 до 1001 всего 166 чисел, которые делятся на 6.

    Теперь найдем количество натуральных чисел из множества от 1 до 1001, которые не делятся на 6.

    1001 - 166 = 835.

    Ответ. 835.
  2. 24 октября, 00:30
    0
    Тупо каждую шестую цифру уберай и всё

    такие как 6 12 18 24 и тд.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «записаны натуральные числа от 1 до 1001. Стерли все числа, делящиеся на 6. Сколько чисел осталось на доске? ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы