Задать вопрос
23 июля, 13:32

На рынке молочница торговала молоком из двух бочек: одна из которых вмещала в 3 раза больше. чем другая. Когда в маленькой бочке остался 21 литр молока. а в другой 39 литров, молочница долила доверху маленькую бочку молоком из большой. В результате большая бочка оказалась наполненной ровно нополовину. Сколько молока она отлила и какого объема были бочки?

+3
Ответы (2)
  1. 23 июля, 15:44
    0
    х - количество перелитого молока из большой емкости в маленькую.

    39-х - это половина большой бочки, а 21+х - это полная маленькая бочка

    Значит, объем большой бочки равен 2 (39-х)

    А объем маленькой в 3 раза меньше, 3 (29+х)

    Составляем уравнение:

    3 (21+х) = 2 (39-х)

    63+3 х=78-2 х

    3 х+2 х=78-63

    5 х=15

    х=15/5

    х=3 - количество перелитого молока в маленькую бочку

    Объем маленькой бочки равен: 3+21=24 (л)

    Объем большой бочки равен: 2 * (39-3) = 2*36=72 (л)
  2. 23 июля, 16:07
    0
    Примем

    х - емкость маленькой бочки, л

    у - емкость большой бочки, л

    а - количество перелитого молока, л

    тогда

    у=3*х

    21+а=х

    39-а=у*1/2

    у = (39-а) * 2

    (39-а) * 2=3 * (21+а)

    78-2*а=63+3*а

    78-63=3*а+2*а

    5*а=15

    а=3 л

    х=21+3=24 л

    у = (39-3) * 2=72 л

    Ответ:

    маленькая бочка - 24 литра

    большая бочка - 72 литра

    перелила - 3 литра
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «На рынке молочница торговала молоком из двух бочек: одна из которых вмещала в 3 раза больше. чем другая. Когда в маленькой бочке остался 21 ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы