Задать вопрос
2 апреля, 01:32

Найдите какую-нибудь пару натуральных чисел а и b, больших 1, удовлетворяющих уравнению a^13·b^31=6^2017

+2
Ответы (1)
  1. 2 апреля, 01:41
    0
    Запишем a^13·b^31=6^2017 как (6^ (x)) ^13 * (6^ (y)) ^31=6^2017 = >

    6^13x*6^31y=6^2017

    6^13x+6^31y=6^2017

    13x+31y=2017

    Методом логического подбора решаем и получаем:

    х=55 у=42

    Проверка:

    13*55+31*42=2017

    715+1302=2017

    2017=2017

    => a=6^55 b=6^42

    Ответ: 6^55; 6^42
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Найдите какую-нибудь пару натуральных чисел а и b, больших 1, удовлетворяющих уравнению a^13·b^31=6^2017 ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы