Задать вопрос
14 декабря, 09:27

В углах квадрата написаны числа 1,2,3,4 в некотором порядке. Некоторое количество таких квадратов сложили в стопку и подсчитали суммы чисел в каждом углу стопки. Могли все 4 суммы оказаться равными 2012?

+2
Ответы (1)
  1. 14 декабря, 12:20
    0
    Сумма чисел в вершинах каждого отдельного треугольника равна 1+2+3=6. То есть, сколько бы мы ни взяли треугольников, общая сумма всех чисел в стопке будет равна какому-то числу, кратному 6. Если бы в каждом углу сумма была равна 55, то общая сумма была бы 55*3 = 165. Поскольку 165 не делится на 6, значит, такой случай невозможен. Ответ: нет.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «В углах квадрата написаны числа 1,2,3,4 в некотором порядке. Некоторое количество таких квадратов сложили в стопку и подсчитали суммы чисел ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы