Задать вопрос
19 февраля, 12:23

Докажите, что при любом целом значении m значением выражения (m²+1) (m-1) - (m-1) ³ является чётным числом

+1
Ответы (1)
  1. 19 февраля, 15:13
    0
    Раскроем скобки, получим

    m3+m-m2-1-m3+m-m2-1 (м2 и м3 - это м в квадрате и м в кубе)

    Приведем подобные, кубы сократятся

    2m-2m2-2

    Вынесем двойку

    2 (m-m2-1)

    Любое число, которое является четным, делится на 2, и его можно представить в виде произведения 2 и другого числа.

    В результате преобразований мы получили произведение некоторого числа (выражение в скобках) и 2. Таким образом, оно будет четным независимо от m.

    Следовательно, значение исходного выражения является четным при любых m.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Докажите, что при любом целом значении m значением выражения (m²+1) (m-1) - (m-1) ³ является чётным числом ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы