Задать вопрос
1 сентября, 17:56

В турнире математических боѐв каждая из 15 команд-участниц провела не менее 7 игр. Докажите, что для любых двух команд А и В верно следующее утверждение: либо они сыграли матч между собой, либо есть команда С, которая провела математические бои и с А и с В.

+2
Ответы (1)
  1. 1 сентября, 21:45
    0
    Пусть существуют команды A и B, не игравшие между собой. Предположим, что каждая из оставшихся 13 команд не играла с обеими из команд A и B. Из условия следует, что среди этих 13 команд не менее 7 играли с командой A. Тогда с командой B играли не более 13-7=6 команд, что противоречит условию. Таким образом, для любых команд A и B, не игравших между собой, найдется команда C, игравшая и с A и с B, что и требовалось.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «В турнире математических боѐв каждая из 15 команд-участниц провела не менее 7 игр. Докажите, что для любых двух команд А и В верно ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы