Задать вопрос
22 марта, 18:35

Монета брошена 10 раз. Найти вероятность того, что "герб" выпадет ровно 4 раза.

+3
Ответы (1)
  1. 22 марта, 19:51
    0
    Вероятность вычисляем двумя способами:

    1). по формуле Бернулли, для нашего случая

    P=C*p^n

    C = n!/k! (n-k) ! = 10*9*8*7*6*5*4!/4!*6*5*4! = 5040/24=210

    k - выпадение герба

    P - вероятность выпадения герба 4 раза при 10 бросках

    p - вероятность выпадения герба при одном броске - 1/2

    n - общее количество бросков n=10

    P=210 * (1/2) ^10 = 210/1024=0,205

    2). Классическим способом:

    P = m/N,

    N - число всех равновозможных исходов = 2^ n, (где 2 исходы бросания герб или решка, n - число бросков),

    N = 2^10=1024

    Благоприятных событий m = C k/m = n!/k! (n-k) ! = 210, где k - выпадение герба

    P = 210/1024=0,205
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Монета брошена 10 раз. Найти вероятность того, что "герб" выпадет ровно 4 раза. ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы