Задать вопрос
12 октября, 04:58

Дан прямоугольный треугольник abc с прямым углом c. пусть bk-биссектриса этого треугольника. окружность, описанная около тругольника akb, пересекает вторично сторону bc в точке l. докажите, что cb+cl=ab

+2
Ответы (1)
  1. 12 октября, 07:21
    0
    Опустим перпендикуляр KM на AB. Тогда KM=KC и BM=CB, т. к. треугольники KMB и KCB равны, Отрезки KA и KL равны, т. к. стягивают равные дуги (а дуги равны, т. к. BK - биссектриса). Значит треугольники KMА и KCL равны. Значит AM=CL, Значит AB=AM+BM=CL+CB, что и требовалось.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Дан прямоугольный треугольник abc с прямым углом c. пусть bk-биссектриса этого треугольника. окружность, описанная около тругольника akb, ...» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы