Задать вопрос
22 ноября, 22:12

Вычислите: sin (альфа+бета), если sin альфа=3/5, cos beta = - 12/13, pi/2

+5
Ответы (1)
  1. 22 ноября, 23:08
    0
    sinα=3/5;

    π/2<α<π;

    cosβ=-12/13;

    π/2<β<π;

    cosα=-√1-9/25=-√16/25=-4/5 - т. к. косинус во второй четверти отрицателен;

    sinβ=√1-144/169=√25/169=5/13 - т. к. синус во второй четверти положителен;

    sin (α+β) = sinα*cosβ+cosα*sinβ = (3/5) * (-12/13) + (-4/5) * (5/13) = - 36/65-20/65=-56/65.

    Вроже так.
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Вычислите: sin (альфа+бета), если sin альфа=3/5, cos beta = - 12/13, pi/2 ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы