Войти
Задать вопрос
Алгебра
Филипий
15 июня, 10:02
Найдите точку максимума функции y=x^3+3x^2+8
+4
Ответы (
1
)
Эмилий
15 июня, 13:06
0
Находим первую производную функции:
y' = 3x^2 + 6x
Приравниваем ее к нулю:
3x^2 + 6x = 0 / : 3
x^2 + 2x = 0
x (x + 2) = 0
x₁ = - 2
x₂ = 0
Найдем вторую производную:
y'' = 6x + 6
Вычисляем:
y'' ( - 2) = - 6<0 - значит точка x = - 2 точка максимума функции.
y'' (0) = 6 >0 - значит точка x = 0 точка минимума функции.
Комментировать
Жалоба
Ссылка
Знаешь ответ?
Отправить
Не уверен в ответе?
Найди верный ответ на вопрос ✅
«Найдите точку максимума функции y=x^3+3x^2+8 ...»
по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Помоги с ответом
Какое наибольшее число плоскастей можно проаести через различные пары из четырех параллельных прямых
Нет ответа
Почему при упоминании о лимоне у человека выделяется слюна? случается ли такое у людей которые не ели лимоны?
Нет ответа
Значения слов: 1. Дельта 2. пороги 3. ил 4. папирус 5. оазин 6. фараон
Нет ответа
Объясните как определить заряд иона образуемого кислотным остатком и соответствующий оксид ... на примере H3PO4
Нет ответа
Найдите значение минус А если 1) a=3,8 2) a=-6,4
Нет ответа
Главная
»
Алгебра
» Найдите точку максимума функции y=x^3+3x^2+8
Войти
Регистрация
Забыл пароль