Задать вопрос
17 апреля, 21:27

Решите уравнение

(x+2) (x-3) - x (x-1) = 90

Докажите, что выражение x^2-8x+20 принимает только положительное значение.

+5
Ответы (1)
  1. 17 апреля, 21:35
    0
    1) (x+2) (x-3) - x (x-1) = 90

    x^2+2x-3x-6-x^2+x=90

    0 х=96

    Действительных решений нет

    Ответ: ∅

    2) x^2-8x+20

    Рассмотри график функции x^2-8x+20. Найдем нули, где функция пересекает ось х

    x^2-8x+20=0

    D=64-4*20=64-80=-16

    Действительных решений нет, значит график у = x^2-8x+20 не пересекает ось Ох

    Графиком функции у = x^2-8x+20 является парабола. Т. к при старшей степени (x^2) стоит положительный коэффициент = 1, то ветви параболы направлены вверх.

    Из этого следует, что график у = x^2-8x+20 лежит выше оси Ох и принимает только положительные значения
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «Решите уравнение (x+2) (x-3) - x (x-1) = 90 Докажите, что выражение x^2-8x+20 принимает только положительное значение. ...» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы