Задать вопрос
18 июля, 02:11

В прямоугольном треугольнике из середины гипотенузы опущены перпендикуляры на катеты. Используя теорему Фалеса, докажите, что эти перпендикуляры являются средними линиями треугольника.

+5
Ответы (1)
  1. 18 июля, 05:19
    0
    ТреугольникАВС, уголС=90, точка К-середина АВ, АК=КВ, КН - перпендикуляр на АС, КМ-перпендикуляр на ВС, КН параллельна ВС, КМ параллельна АС

    теорема Фалеса - если параллельные прямые которые пересекают стороны угла отсекают на одной его стороне равные отрезки, то они осекают равные отрезки и на другой стороне. АН=НС, КН - средняя линия треугольника АВС (соединяет середины сторон), ВМ=МС, КМ - средняя линия
Знаешь ответ?
Не уверен в ответе?
Найди верный ответ на вопрос ✅ «В прямоугольном треугольнике из середины гипотенузы опущены перпендикуляры на катеты. Используя теорему Фалеса, докажите, что эти ...» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы